Chemical cycling and deposition of atmospheric mercury: Global constraints from observations
نویسندگان
چکیده
[1] We use a global 3-D model of atmospheric mercury (GEOS-Chem) to interpret worldwide observations of total gaseous mercury (TGM) and reactive gaseous mercury (RGM) in terms of the constraints they provide on the chemical cycling and deposition of mercury. Our simulation including a global mercury source of 7000 Mg yr 1 and a TGM lifetime of 0.8 years reproduces the magnitude and large-scale variability of TGM observations at land sites. However, it cannot capture observations of high TGM from ship cruises, implying a problem either in the measurements or in our fundamental understanding of mercury sources. Observed TGM seasonal variation at northern midlatitudes is consistent with a photochemical oxidation for Hg(0) partly balanced by photochemical reduction of Hg(II). Observations of increasing RGM with altitude imply a long lifetime of Hg(II) in the free troposphere. We find in the model that Hg(II) dominates over Hg(0) in the upper troposphere and stratosphere and that subsidence is the principal source of Hg(II) at remote surface sites. RGM observations at Okinawa Island (Japan) show large diurnal variability implying fast deposition, which we propose is due to RGM uptake by sea-salt aerosols. Observed mercury wet deposition fluxes in the United States show a maximum in the southeast, which we attribute to photochemical oxidation of the global Hg(0) pool. They also show a secondary maximum in the industrial Midwest due to regional emissions that is underestimated in the model, possibly because of excessive dry deposition relative to wet (dry deposition accounts for 68% of total mercury deposition in the United States in the model, but this is sensitive to the assumed phase of Hg(II)). We estimate that North American anthropogenic emissions contribute on average 20% to U.S. mercury deposition.
منابع مشابه
Impacts of changes in climate, land use and land cover on atmospheric mercury
Mercury is an important pollutant that can be transported globally due to its long lifetime in the atmosphere. Atmosphere-surface exchange is a major process affecting the cycling of mercury in the global environment and its impacts on food webs. We investigate the sensitivities of the air-surface exchange, atmospheric transport, and budget of mercury to projected 2000e2050 changes in climate a...
متن کاملA new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget
Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0 /HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling o...
متن کاملGlobal 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition
[1] We develop a mechanistic representation of land-atmosphere cycling in a global 3-D ocean-atmosphere model of mercury (GEOS-Chem). The resulting land-oceanatmosphere model is used to construct preindustrial and present biogeochemical cycles of mercury, to examine the legacy of past anthropogenic emissions, to map anthropogenic enrichment factors for deposition, and to attribute mercury depos...
متن کاملInteractive comment on “Surface deposition of oxidized mercury dominated by production in the upper and middle troposphere” by Viral Shah and Lyatt Jaeglé
This paper investigates – using the GEOS-Chem global chemical transport model how surface deposition of divalent mercury species (Hg(II)) is influenced by Hg(II) production at different atmospheric heights. The authors show that surface deposition is dominated by production in the upper and middle troposphere and highlight the large role of subtropical anticyclones as a global reservoir of Hg(I...
متن کاملHuman impacts on open ocean mercury concentrations
[1] We develop an empirically constrained multicompartment box model for mercury cycling in open ocean regions to investigate changes in concentrations resulting from anthropogenic perturbations of the global mercury cycle. Using Monte Carlo simulations, we explicitly consider the effects of variability in measured parameters on modeled seawater concentrations. Our simulations show that anthrop...
متن کامل